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Abstract
For a complex scalar field ψ(x, y) in the plane, the flow lines (integral curves
of the current field Im ψ∗∇ψ) typically spiral slowly in or out of a phase vortex
(where ψ = 0), with the distance between successive windings decreasing as
2πKr3 near the vortex at r = 0. The coefficient K depends on the derivatives
of ψ at the vortex. In three dimensions, the flow spiral migrates slowly along
the vortex line, in a helix whose pitch is proportional to r2. For fields with well-
defined orbital angular momentum, the flow lines can be determined explicitly
not just near the vortex but also globally. The explicit forms of flow lines near
phase extrema and saddles are also found.

PACS numbers: 02.30.Mv, 02.40.Xx, 42.25.Bs, 03.75.Lm, 67.40.Vs

1. Introduction

The zeros of complex scalar functions ψ—representing waves, for example—are singularities
where the phase of ψ is undefined [1–3]. Around each singularity, the current (orthogonal to
the phase contours) circulates; therefore the zeros are phase vortices. It is known [4] that the
flow lines approach circles close to a vortex.

My main purpose here is to study the details of this circulation. In the general case
(section 2), an asymptotic averaging argument (section 2) shows that the flow lines spiral in or
out of each vortex, with the spiralling getting more circular closer to the vortex. In an interesting
class of special cases (section 3), the spiralling can be calculated without approximation. For
completeness, the general form of the flow lines is also calculated (section 4) near stationary
points of phase, that is phase extrema and phase saddles (at these stationary points, the phase
contours are singular but the phase itself is well defined).

Consider functions in the plane

r = {x, y} = r{cos φ, sin φ}, (1)

represented either by their modulus and phase or their real and imaginary parts:

ψ(r) = ρ(r) exp(iχ(r)) = u(r) + iv(r). (2)
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Let the vortex be situated at the origin, i.e. ψ(0) = 0. The waves could be confined to the r
plane, or this plane could be a section through a wave in space—a situation we consider briefly
at the end of section 2. Assume that ψ(r) does not depend on time, except possibly through
an overall phase factor (representing a monochromatic wave, for example), so the vortices do
not move.

The current is the real vector field

j(r) = Im ψ∗(r)∇ψ(r) = ρ(r)2∇χ(r)

= u(r)∇v(r) − v(r)∇u(r) = jr(r)er + jφ(r)eφ. (3)

For a wave in space, j is the component of the three-dimensional current vector in the r plane.
In quantum mechanics, j is the probability current, that is the expectation value of the local
momentum operator. In an optical field well approximated by a scalar wave (for example a
uniformly polarized paraxial wave), j is directed along the Poynting vector.

Our interest will be in the flow lines, defined as the integral curves of the vector field j,
satisfying the equation of motion

ṙ(t) = j(r(t)). (4)

Although not directly observable, the flow lines give a useful picture of the current distribution.
(In the hydrodynamical interpretation of Madelung [5], the flow lines are the trajectories of the
particles in an imaginary probability fluid; in the later and more popular Bohmian interpretation
[6], the lines are regarded as trajectories of individual quantum particles.)

In the special case where ∇ · j = 0, the flow lines near a vortex are closed, because
then j can be represented in the form ∇ × (f (r)ez), so the flow lines are the contour lines
f (r) = constant. This occurs, for example, when ∇2ψ(r) = g(r)ψ(r), where g(r) is a real
function, as in the Schrödinger or Helmholtz equations in the plane. In the general case that we
study here (for example waves in space, which do not satisfy a two-dimensional wave equation
in the plane), the flow lines are not contour lines, and must be determined by integrating (4).

We wish to study the geometry of the flow lines, rather than the history of real or imaginary
particles moving along them, so we eliminate time using (2) and (4), from which the radial
and angular velocities are

ṙ = r · j
r

, φ̇ = r × j · ez

r2
. (5)

This leads to the equation for the geometry of the flow lines in polar coordinates:

dr

dφ
= r r · j

r × j · ez

. (6)

2. Flow spirals near generic phase singularities

To determine the flow lines asymptotically close to the vortex at r = 0, we expand ψ about
its zero:

ψ(r) = cixi + cij xixj + cijkxixjxk + · · ·
≡ c · r + r · C · r + cijkxixjxk + · · · . (7)

Here i, j, k take the values 1 (x component) or 2 ( y component), and the summation convention
is employed. c is a complex vector, C is a complex symmetric matrix and cijk is a complex
fully symmetric third-rank tensor.

To leading order, in which C and cijk are neglected, j = Im[c∗ · r c], so the radial flow
velocity r · j/r = Im[|c · r|2]/r = 0. This is the approximation in which the flow lines are
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circles [4]. In order to go further, it is necessary to include the quadratic and cubic terms
in (7).

From (7) and (3), the right-hand side of the flow line equation (6) can be calculated up
through terms of order r3. The lowest term, of order r, vanishes; this is the circular limit
just discussed. The terms of order r2 and r3 depend periodically on the azimuth φ (cf (1)),
implying that the flow lines are slightly non-circular. Spiralling is determined by the secular
behaviour, that is by the average variation in r over many windings. This is obtained by solving
the φ-averaged equation, defined by〈

dr

dφ

〉
≡ 1

2π

∫ 2π

0
dφ

dr

dφ
. (8)

A long but elementary calculation shows that the φ-averaged coefficient of r2 is zero and the
φ-averaged coefficient of r3 is a constant, so that〈

dr

dφ

〉
= Kr3 + · · · . (9)

This quantifies the slow spiralling: outwards with increasing φ when K > 0, and inwards
when K < 0, with the radial separation between windings (�φ = 2π) decreasing as r3 near
the vortex.

Replacing r by its average (equivalent to neglecting oscillations of order r2), and solving
the resulting equation, we obtain the following formula for the flow line through the point
{r0, φ0}:

r(φ) = r0√
1 − 2Kr2

0 (φ − φ0)

+ · · · . (10)

This is the main result of this section. It is valid when r is small, that is when φ � φ0(K > 0)

or φ � φ0(K < 0).
The same calculation gives the explicit form of the constant K:

K = 2 Im[(Tr C)c∗] × Im[C† · c] · ez

(Im[c∗ × c · ez])2
+

3 Im c∗
i cijj

2 Im[c∗ × c · ez]
. (11)

In general, K is not zero. However, the case mentioned earlier, that is ∇2ψ(r) = g(r)ψ(r),
implies Tr C = 0 and cijj = 6g(r)ci , so K = 0, and, as expected for this case, there is no
spiralling.

In three dimensions, the phase generally varies not only around the vortex but also along
it (i.e. along curl j—the z direction, and representing, for example, a phase factor exp(ikz)).
Then j has a z component, so the flow lines migrate out of the r plane into a helix, reflecting
the screw character of waves in the general case [3, 7, 8]. A short calculation shows that
ż ∼ dz/dφ ∼ r2, so the pitch of the helix (z distance between windings) is also of order r2.
Asymptotically close to the vortex, the pitch is large compared with the inward or outward
spiralling r3 but small compared with r , so the flow lines form a tightly wound helix sweeping
out a surface whose radius depends exponentially on z (because dr/r is proportional to dz).

3. Flow spirals for angular momentum eigenstates

Consider the class of complex scalars of the form

ψ(r) = exp(imφ)F(r). (12)
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where F(r) is a complex function of the form rm times a smooth function of r2. These
represent waves with a well-defined orbital angular momentum quantum number m [9]. The
current is

j = Im[F ∗F ′]er + m
|F |2
r

eφ = ṙer + rφ̇eφ, (13)

and the flow line equation (6) is

dr

dφ
= r2

m
Im

[
F ′

F

]
. (14)

There is no angular dependence on the right-hand side, so averaging is not necessary, and the
exact flow lines can be found by integration:∫ r(r0,φ0)

r0

dr

r2 Im[F ′(r)/F (r)]
= (φ − φ0)

m
. (15)

This case is both more and less general than that considered in the previous section: more
general, because it allows for higher order vortices (|m| > 1), and (15) gives the exact flow
lines not only near the vortex but also for all r; and less general, because the form (12) excludes
the azimuthal modulations that were averaged away according to (8).

An example where the two cases overlap is m = +1 and

F(r) = r(1 + ibr2), (16)

that is

ψ(r) = (x + iy)(1 + ib(x2 + y2)). (17)

In (7) this corresponds to c = {1, i}, C = 0, c111 = 3c122 = 3c212 = 3c221 = ib, c222 =
3c112 = 3c121 = 3c211 = −b, whence the consistency of (14) and (9) can be established, with
K = 2b in (11). The solution of (15) for all r is (for real b)

φ(r; r0, φ0) = φ0 +

(
r2 − r2

0

)
4

[
b +

1

b(rr0)2

]
. (18)

(If b had an imaginary part, there would be an additional term proportional to log(r/r0).) From
(18), we get the explicit Cartesian coordinates for the flow line through {r0, φ0}, expressed
parametrically as a function of r:

x(r; r0, φ0) = r cos[φ(r; r0, φ0)] y(r; r0, φ0) = r sin[φ(r; r0, φ0)]. (19)

Figure 1(a) illustrates the slow spiralling out of the vortex, and figure 1(b) shows the phase
contours and flow lines far from the vortex.

An example of physical interest is the wave propagating from an initial wavefront in the
form of a helicoidal phase step of height 2π . Here m = +1, and [10]

F(r) =
√

π

8i
exp

(
1

4
ir2

)
r

[
J0

(
1

4
r2

)
− iJ1

(
1

4
r2

)]
. (20)

(Here J denotes Bessel functions, and r is a scaled coordinate, defined in terms of the physical
cylindrical radial coordinate R by r = R

√
(k/z), where z is the propagation distance and k

the wavenumber.) For this case, the integral in (15) was calculated exactly. Figure 2(a) shows
the expected universal behaviour near the vortex (the same as in figure 1(a)).

Far from the vortex (figure 2(b)), a different phenomenon appears: the flow lines are
asymptotic to concentric circles. This can be understood from the radial current associated
with (20), namely

jr(r) = 1
4πrJ0

(
1
4 r2

)
J1

(
1
4 r2

)
. (21)
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Figure 1. Thick curves: flow lines; thin curves: phase contours at intervals of π/6, for the wave
(17) with b = 1. (a) Showing a single flow line spiralling out of the singularity; (b) as (a), showing
three flow lines spiralling into the far field.
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Figure 2. As figure1, for the wave (20). (a) A single flow line spiralling out of the singularity;
(b) far from the singularity, showing 12 flow lines with attracting and repelling circles where the
radial current vanishes.

The radial flow is alternately positive and negative (outward and inward spiralling, respectively)
in zones separated by circles determined by the interlaced zeros of J0 and J1. Since the
angular flow is always in the direction of increasing φ, these circles are alternately attractors
and repellers.

4. Flow lines near phase extrema and phase saddles

The local form of the phase near a stationary point of phase (not to be confused with a vortex)
at r = 0 is

χ(r) = χ0 + 1
2 r · A · r = χ0 + 1

2A11x
2 + A12xy + 1

2A22y
2. (22)

Positive-definite or negative-definite A (both eigenvalues positive or negative) correspond
to phase minima or maxima respectively, while negative-definite A corresponds to a phase
saddle [11, 12].
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Figure 3. Curves as in figure 1, near stationary points of phase characterized by (22), with flow lines
calculated using (26). (a) A phase minimum (current source) with A11 = 1, A12 = 0.3, A22 = 0.5;
(b) a phase saddle with A11 = 1, A12 = 0.3, A22 = −0.5.

The flow velocity is proportional to

ṙ = ∇χ = A · r, (23)

whose solution, starting from the initial point r0, is the matrix exponential

r(t) = exp(At)r0. (24)

Expressing this in terms of the eigenvalues λ1, λ2 and corresponding eigenvectors u1, u2 of A
leads to

u1 · r(t) = exp(λ1t)u1 · r0, u2 · r(t) = exp(λ2t)u2 · r0, (25)

whence t can be eliminated, and the flow line through r0 written explicitly as(
u1 · r
u1 · r0

)λ2

=
(

u2 · r
u2 · r0

)λ1

. (26)

In general, the exponents λ1 and λ2 are different, so the flow lines are non-analytic at
r = 0, unlike the phase contours, which are ellipses for extrema and hyperbolas for saddles.
Figure 3 illustrates a typical case of each kind.

In the special case A12 = 0, the non-analyticity can be displayed in a simple form:(
x

x0

)A22

=
(

y

y0

)A11

. (27)

Extrema correspond to A11/A22 > 0, and saddles to A11/A22 < 0.
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